74LS669 Synchronous 4-Bit Up/Down Binary Counter IC (74669) DIP-14 Package
The 74LS669 is a synchronous 4-bit up/down counter. The LS669 is a 4-bit binary counter. For high speed counting applications, this presettable counter features an internal carry lookahead for cascading purposes. By clocking all flip-flops simultaneously so the outputs change coincident with each other (when instructed to do so by the count enable inputs and internal gating) synchronous operation is provided. This helps to eliminate output counting spikes, normally associated with asynchronous (ripple-clock) counters. The four master-slave flip-flops are triggered on the rising (positive-going) edge of the clock waveform by a buffered clock input. Circuitry of the load inputs allows loading with the carry-enable output of the cascaded counters. Because loading is synchronous, disabling of the counter
SKU:
RW-02564
Apple Shopping Event
Hurry and get discounts on all Apple devices up to 20%
The 74LS669 is a synchronous 4-bit up/down counter. The LS669 is a 4-bit binary counter. For high speed counting applications, this presettable counter features an internal carry lookahead for cascading purposes. By clocking all flip-flops simultaneously so the outputs change coincident with each other (when instructed to do so by the count enable inputs and internal gating) synchronous operation is provided. This helps to eliminate output counting spikes, normally associated with asynchronous (ripple-clock) counters. The four master-slave flip-flops are triggered on the rising (positive-going) edge of the clock waveform by a buffered clock input. Circuitry of the load inputs allows loading with the carry-enable output of the cascaded counters. Because loading is synchronous, disabling of the counter
by setting up a low level on the load input will cause the outputs to agree with the data inputs after the next clock pulse. Cascading counters for N-bit synchronous applications are provided by the carry look-ahead circuitry, without additional gating. Two count-enable inputs and a carry output help accomplish this function. Count-enable inputs (P and T) must both be low to count. The level of the up-down input determines the direction of the count. When the input level is low, the counter counts down, and when the input is high, the count is up. Input T is fed forward to enable the carry output. The carry output will now produce a low level output pulse with a duration ? equal to the high portion of the QA output when counting up and when counting down ? equal to the low portion of the QA output. This low level
carry pulse may be utilized to enable successive cascaded stages. Regardless of the level of the clock input, transitions at the P or T inputs are allowed. By diode-clamping all inputs, transmission line effects are minimized which allows simplification of system design. Any changes at control inputs (ENABLE P, ENABLE T, LOAD, UP/DOWN) will have no effect on the operating mode until clocking occurs because of the fully independent clock circuits. Whether enabled, disabled, loading or counting, the function of the counter is dictated entirely by the conditions meeting the stable setup and hold times.
Reviews
Clear filtersThere are no reviews yet.